Site map 1Site map 2Site map 3Site map 4Site map 5Site map 6Site map 7Site map 8Site map 9Site map 10Site map 11Site map 12Site map 13Site map 14Site map 15Site map 16Site map 17Site map 18Site map 19Site map 20Site map 21Site map 22Site map 23Site map 24Site map 25Site map 26Site map 27Site map 28Site map 29Site map 30Site map 31Site map 32Site map 33Site map 34Site map 35Site map 36Site map 37Site map 38Site map 39Site map 40Site map 41Site map 42Site map 43Site map 44Site map 45Site map 46Site map 47Site map 48Site map 49Site map 50Site map 51Site map 52Site map 53Site map 54Site map 55Site map 56Site map 57Site map 58Site map 59Site map 60Site map 61Site map 62Site map 63Site map 64Site map 65Site map 66Site map 67Site map 68Site map 69Site map 70Site map 71Site map 72Site map 73Site map 74Site map 75Site map 76Site map 77Site map 78Site map 79Site map 80Site map 81Site map 82Site map 83Site map 84Site map 85Site map 86Site map 87Site map 88Site map 89Site map 90Site map 91Site map 92Site map 93Site map 94Site map 95Site map 96Site map 97Site map 98Site map 99Site map 100Site map 101Site map 102Site map 103Site map 104Site map 105Site map 106Site map 107Site map 108Site map 109Site map 110Site map 111Site map 112Site map 113Site map 114Site map 115Site map 116Site map 117Site map 118Site map 119Site map 120Site map 121Site map 122Site map 123Site map 124Site map 125Site map 126Site map 127Site map 128Site map 129Site map 130Site map 131Site map 132Site map 133Site map 134Site map 135Site map 136Site map 137Site map 138Site map 139Site map 140Site map 141Site map 142Site map 143Site map 144Site map 145Site map 146Site map 147Site map 148Site map 149Site map 150Site map 151Site map 152Site map 153Site map 154Site map 155Site map 156Site map 157Site map 158Site map 159Site map 160Site map 161Site map 162Site map 163Site map 164Site map 165Site map 166Site map 167Site map 168Site map 169Site map 170Site map 171Site map 172Site map 173Site map 174Site map 175Site map 176Site map 177Site map 178Site map 179Site map 180Site map 181Site map 182Site map 183Site map 184Site map 185Site map 186Site map 187Site map 188Site map 189Site map 190Site map 191Site map 192Site map 193Site map 194Site map 195Site map 196Site map 197Site map 198Site map 199Site map 200Site map 201Site map 202Site map 203Site map 204Site map 205Site map 206Site map 207Site map 208Site map 209Site map 210Site map 211Site map 212Site map 213Site map 214Site map 215Site map 216Site map 217Site map 218Site map 219Site map 220Site map 221Site map 222Site map 223Site map 224Site map 225Site map 226Site map 227Site map 228Site map 229Site map 230Site map 231Site map 232Site map 233Site map 234Site map 235Site map 236Site map 237Site map 238Site map 239Site map 240Site map 241Site map 242Site map 243Site map 244Site map 245Site map 246Site map 247Site map 248Site map 249Site map 250Site map 251Site map 252Site map 253Site map 254Site map 255Site map 256Site map 257Site map 258Site map 259Site map 260Site map 261Site map 262Site map 263Site map 264Site map 265Site map 266Site map 267Site map 268Site map 269Site map 270Site map 271Site map 272Site map 273Site map 274Site map 275Site map 276Site map 277Site map 278Site map 279Site map 280Site map 281Site map 282Site map 283Site map 284Site map 285Site map 286Site map 287Site map 288Site map 289Site map 290Site map 291Site map 292Site map 293Site map 294Site map 295Site map 296Site map 297Site map 298Site map 299Site map 300Site map 301Site map 302Site map 303Site map 304Site map 305Site map 306Site map 307Site map 308Site map 309Site map 310Site map 311Site map 312Site map 313Site map 314Site map 315Site map 316Site map 317Site map 318Site map 319Site map 320Site map 321Site map 322Site map 323Site map 324Site map 325Site map 326Site map 327Site map 328Site map 329Site map 330Site map 331Site map 332Site map 333Site map 334Site map 335Site map 336Site map 337Site map 338Site map 339Site map 340Site map 341Site map 342Site map 343Site map 344Site map 345Site map 346Site map 347Site map 348Site map 349Site map 350Site map 351Site map 352Site map 353Site map 354Site map 355Site map 356Site map 357Site map 358Site map 359Site map 360Site map 361Site map 362Site map 363Site map 364Site map 365Site map 366Site map 367Site map 368Site map 369Site map 370Site map 371
english


 
 

О нас | О проекте | Как вступить в проект? | Подписка

 

Разделы сайта

Новости Армии


Вооружение

Поиск
в новостях:  
в статьях:  
в оружии и гр. тех.:  
в видео:  
в фото:  
в файлах:  
Реклама

Статьи
Отправить другу

«Окно» в космос

Отдельный оптико-электронный комплекс контроля космического пространства «Окно» располагается на позиции г. Саганлок (2200 м над уровнем моря) в Таджикистане. Фото: Алексей Матвеев

История создания и перспективы развития оптико-электронных средств контроля околоземного пространства

В 1969 г. в составе ЦКБ Красногорского завода было организовано IV тематическое направление по разработке оптико-электронных средств контроля космического пространства. Название «Окно» (зародилось в 45-м ЦНИИ МО) первоначально представляло собой аббревиатуру словосочетания «оптический контроль небесной области» и лишь впоследствии, уже прописными буквами, так была названа оптико-электронная станция. Разработку проектной документации этой станции и должен был выполнить Красногорский завод. Впоследствии, по результатам проработки, с учетом объема необходимой аппаратуры, оптико-электронная станция была переименована в оптико-электронный комплекс.

Началом создания комплекса «Окно» в какой-то мере могут считаться события, описанные в статье профессора А. Л. Горелика «Космический контроль. Невостребованный потенциал» («Воздушно-космическая оборона», № 3 за 2001 г.), где, в частности, говорится: «Детальное исследование проблемы функционирования системы ПКО, получившей название ИС (истребитель спутников), показало, как это ни парадоксально, что натурные испытания системы при наличии спутников-мишеней провести можно, так как траектории их движения были заранее запрограммированы, но в боевом режиме система работать не может. Поскольку она не скомплексирована с системой, обеспечивающей систему ИС надлежащей информацией».

И далее: «…заместитель начальника 4 ГУ МО по научной работе генерал-лейтенант К. А. Трусов с полным пониманием отнесся к нашему предложению о необходимости создания в стране специальной системы, которая бы обеспечивала эффективное функционирование системы ПКО (в частности системы ИС), и поручил 45-му ЦНИИ МО разработать ее аванпроект. Аванпроект новой системы, получившей название Системы контроля космического пространства (СККП), был одобрен и утвержден начальником главка». Это было в 1969 г.

Для контроля предполагалось использовать радиолокационные и оптические средства. Решение поставленной задачи по созданию оптических комплексов для СККП возлагалось на Миноборонпром. Министерством по этим работам были определены головные организации: НИИ прикладной физики (НИИ ПФ) и Красногорский механический завод (КМЗ), так как обе организации уже имели большой опыт создания высокоточных оптико-механических комплексов, обладали определенным научно-техническим заделом и квалифицированными кадрами. Процесс внутриведомственных увязок, определения ролей и координации работ исполнителей был непростым. В итоге головным предприятием по созданию оптико-электронного комплекса «Окно» был определен КМЗ (постановление ЦК КПСС и СМ СССР от 21.11.74 г. № 896-306 и Решение ВПК от 25.7.1975 г.).

До этого, в 1969 г. в составе ЦКБ Красногорского завода было организовано IV тематическое направление по разработке оптико-электронных средств контроля космического пространства. Название «ОКНО» (зародилось в 45-м ЦНИИ МО) первоначально представляло собой аббревиатуру словосочетания «Оптический Контроль Небесной Области» и лишь впоследствии, уже прописными буквами, так была названа оптико-электронная станция. Разработку проектной документации этой станции и должен был выполнить Красногорский завод. Впоследствии, по результатам проработки с учетом объема необходимой аппаратуры оптико-электронная станция была переименована в оптико-электронный комплекс.

Станислав Евгеньевич Здор – ведущий инженер-конструктор – руководитель группы НТЦ ФНПЦ ОАО «Красногорский завод им. С. А. Зверева», кандидат технических наук, заслуженный конструктор РФ

Аванпроект комплекса «Окно» в совокупности содержавший более 50 книг, был разработан в 1972 г. В разработке участвовало около 30 организаций. В 1974-м приказом Миноборонпрома главным конструктором «Окна» был назначен Владимир Семенович Чернов, кандидат технических наук, специалист в области информационно-управляющих систем.

В начале 1975 г. Министерством обороны было утверждено тактико-техническое задание на оптико-электронный комплекс «Окно» (изделие 54Ж6). В составе комплекса предусматривались 10 оптико-электронных станций пяти типов и общекомплексная аппаратура. Все станции были специализированы по диапазонам высот и задачам. Станции для автономного поиска и обнаружения космических объектов (56Ж6, 58Ж6, 60Ж6) были объединены в систему обнаружения (изделие 52Ж6), следящие измерительно-фотометрические станции (57Ж6, 59Ж6) – в систему сбора информации (изделие 53Ж6).

В ТТЗ на комплекс впервые были сформулированы требования к принципиально новому виду специальной военной техники, обеспечивающему оптический контроль космического пространства полностью в автоматическом режиме. В то время аналоги или прототипы подобных средств отсутствовали. О том, насколько пионерской и уникальной была работа, говорит следующий факт.

В 1970-е годы в Центральном конструкторском бюро Красногорского завода главными конструкторами большинства создаваемых изделий для Министерства обороны были опытные оптики-механики, а в руководство оперативных групп входили ведущие оптики и ведущие электрики. Это было оправданно и подтверждено созданием целого ряда уникальных изделий различного назначения.

Следуя заводской традиции, был подготовлен приказ о назначении главными конструкторами оптико-электронных станций высококвалифицированных специалистов-механиков в области создания сложных фотографических и кинотеодолитных приборов.

Однако после детального анализа структуры и задач «Окна» с учетом того, что 50% функций изделий обеспечивают алгоритмы и специальные программы, по требованию В. С. Чернова подготовленный приказ отменили. Ведущими конструкторами станций были назначены молодые и весьма способные специалисты системного профиля, а опытные оптики-механики были выдвинуты на должности ведущих конструкторов телескопов, входящих в состав станций. Время и полученные результаты показали правильность нового подхода в этом вопросе.

Следует отметить, что на всех этапах создания комплекса «Окно» главных конструкторов станции не было, а комплексное решение всех задач по каждой станции возлагалось на ведущих конструкторов станций.

Правильность такого подхода подтверждалась многими рабочими эпизодами на пути создания комплекса. Вот один из них. Инициативный разработчик фотографических приборов придумал и стал настойчиво предлагать новое оптико-телевизионное устройство для автоматического обнаружения космических объектов (КО) на фоне звезд и помех. При обсуждении предложения его спросили: «Какова вероятность правильного обнаружения КО при стандартных условиях наблюдения и каков при этом будет поток ложных тревог?».

Александр Борисович Бельский – заместитель генерального директора по науке федерального научно-производственного центра ОАО «Красногорский завод им. С. А. Зверева»

Он сначала не мог понять, о чем речь. Когда уточнили вопрос: «Сколько из 100 находящихся в кадре КО будут обнаружены за один акт обнаружения?», он воскликнул: «Ах, вот вы о чем. Ну, конечно же, все 100 и будут обнаружены, а ложных тревог вообще не будет». Когда его попросили показать расчеты, он возмутился: «А чего здесь считать? И так все ясно».

Проработанная на КМЗ в рамках темы «Окно» общая концепция создания комплекса хотя и определила общее направление работ, однако выявила целый ряд трудноразрешимых вопросов. Комплекс должен был контролировать диапазон высот от 150 до 40 тыс. км, обеспечивать высокую проницающую силу, большую пропускную способность, иметь ранее недостижимые точностные характеристики, но самое главное – в штатном боевом режиме комплекс должен был работать без какого-либо участия операторов.

Важной составной частью комплекса являлась высокочувствительная телевизионная аппаратура. В оптической наблюдательной астрономии уже был некоторый опыт использования телевизионных систем.

Известно, что первые идеи по использованию телевидения для наблюдения астрономических объектов высказаны еще в 1930-е годы, когда и телевидения как такового еще не было. Однако более или менее регулярное применение телевизионной техники в астрономии началось только после создания высокочувствительных передающих телевизионных трубок (ПТТ) и оптико-электронных преобразователей (ЭОПов). Первым астрономическим объектом, зарегистрированным телевизионной системой, была Луна. Это случилось в 1952 г., использовалась ПТТ типа суперортикон. Примерно в это же время были получены первые телевизионные изображения планет. Дальнейшее совершенствование ПТТ и в первую очередь все тех же суперортиконов позволило поставить вопрос о регистрации на телескопах среднего размера (Dсв=50 см) предельно слабых звезд. Такие опыты были проведены в начале 1960-х гг. в нескольких обсерваториях мира одновременно. Были зарегистрированы звезды с блеском 16 m–19 m.

В СССР первые телевизионные наблюдения слабых звезд были выполнены летом 1962 г. в Крымской астрофизической обсерватории. На полуметровом телескопе была достигнута проницающая сила 16,5 m при времени накопления сигнала 0,08 с. Оптимизация режимов накопления и считывания сигнала, в частности, охлаждение ПТТ до 00С, и выбор наиболее благоприятных условий наблюдения позволили в 1964 г. зарегистрировать на том же телескопе звезды с блеском до 20 m. Время накопления сигнала составляло 4 с. Эти успехи были достигнуты благодаря созданию в СССР (НИИ ПФ Миноборонпрома) телевизионной установки «Андромеда», регистрирующая аппаратура которой состояла из суперортикона ЛИ-214 и сочлененного с ним трехкамерного ЭОПа УМ-92.

Уже первые опыты продемонстрировали существенные преимущества, которые вносило телевидение в астрономическую науку. Прежде всего это повышение пороговой и контрастной чувствительности как минимум на порядок. Появилась гибкость при регистрации астрономических объектов за счет регулирования режимов работы телевизионной системы. Такое регулирование позволяло лучше подстраиваться под изменяющиеся условия наблюдения. Однако сами методы и приемы при этом изменились мало. Либо использовалось прямое визуальное изучение телевизионных изображений на экране ВКУ, либо экран ВКУ фотографировался и исследованию подвергалось фотографическое изображение астрономических объектов, зарегистрированных при помощи телевизионной системы.

Само собой разумеется, что наличие информации о небесных телах в виде электрических сигналов привело к следующему логическому шагу. Начались многочисленные попытки непосредственного ввода астрономической информации в компьютеры для ее дальнейшей обработки в автоматических или интерактивных режимах. Однако все оказалось значительно сложнее. В начале 1970-х годов при работе в реальном времени объем и темп поступления астрономической информации более чем на порядок превышали возможности самых мощных компьютеров, созданных на тот момент. В первую очередь это касалось устройств, преобразующих напряжения видеосигнала в цифровой код. Недостаточными были также и вычислительные мощности компьютеров.

Благодаря комплексу «Окно» серьезные работы по вводу и компьютерной обработке астрономической информации начались в СССР в первой половине 1970-х годов. Одной из первых систем, в которой была успешно решена задача автоматической обработки астрономической информации в реальном масштабе времени, являлась аппаратура, разработанная по техническому заданию Красногорского завода в Особом конструкторском бюро Московского энергетического института под руководством кандидата технических наук В. С. Денисова (изделие 72И6).

Аппаратура обеспечивала обработку телевизионных кадров, содержащих по 160 тыс. элементов, в темпе 25 кадров в сек. Фактически аппаратура представляла собой многоканальный специализированный вычислитель с огромной по тем временам производительностью – 120 млн. операций в секунду. Для сравнения отметим, что самый мощный на тот момент универсальный компьютер, каковым являлся «Эльбрус» в четырехпроцессорной комплектации, обладал быстродействием около 4 млн. операций в сек.

Отладка и проверка аппаратуры ОКБ МЭИ в натурных условиях были выполнены на комплексном стенде экспериментальной базы Красногорского завода, расположенной на территории Бюраканской астрофизической обсерватории (Армянская ССР). Стенд имел в своем составе поисковую и следящую астрономические установки, оснащенные телевизионными камерами на суперкремниконах. Для проведения баллистических расчетов, работы с каталогами КО и обработки координатной и некоординатной информации использовалось несколько высокопроизводительных (по тем временам) вычислительных машин серии «Ряд» с развитым математическим обеспечением.

На экспериментальном стенде в 1977 г. впервые в мировой практике был реализован полный цикл контроля космического пространства оптико-телевизионными средствами в автоматическом режиме. В процессе работы на аппаратуре стенда производились программный поиск космических объектов (КО) поисковой астрономической установкой, автоматическое обнаружение КО на фоне звезд и помех, предварительная завязка орбиты и оценка блеска, идентификация КО (сверка с имеющимся каталогом космических объектов и отнесение вновь обнаруженного КО к классу неизвестных), выдача целеуказаний следящей астрономической установке, захват КО, его отслеживание, высокоточное измерение угловых координат и регистрация фотометрической кривой, обработка полученной информации по специальным алгоритмам, представление уточненных параметров орбиты и некоординатных признаков КО (форма, габариты, стабилизация) потребителю. От момента постановки поисковой задачи до выдачи полученных результатов участие оператора в работе комплекса было исключено.

При создании оптических систем для комплекса было найдено оригинальное решение, позволившее сократить сроки и стоимость разработки. Для станций 57Ж6, 58Ж6, 59Ж6, 60Ж6 были доработаны конструктивы ранее созданных и неплохо себя зарекомендовавших объективов от других изделий (телескопа АЗТ-24, кинотеодолитов КТ-50, КТС и др.). Для станции 56Ж6 такого прототипа не нашлось и был спроектирован уникальный оптический тракт. Он включал вновь разработанный широкоугольный девятилинзовый объектив со сферической фокальной поверхностью и специальный волоконно-оптический преобразователь. Входной торец преобразователя также имел сферическую форму и представлял собой две разнесенные параллельные секционированные полосы, формировавшие на небе оптический барьер. Отдельные секции полос в выходном торце преобразовывались в квадратный формат, соответствующий фотокатоду ПТТ.

Объективы станций, снабженные блендами, затворами, калибраторами, ретерами, механизмами фокусировок, размещаются на опорно-поворотных устройствах с гидростатическими опорами
Фото: Алексей Матвеев

Объективы станций, снабженные блендами, затворами, калибраторами, реперами, механизмами фокусировок и др., размещались на опорно-поворотных устройствах с гидростатическими опорами. Такое техническое решение обеспечило высокие точности, высокие скорости и плавности хода при наведении, слежении, сканировании. Вместе с тем сложность и уникальность гидростатических опор создают определенные трудности при их эксплуатации.

Создание комплекса «Окно» сильно замедлилось в конце 1980-х гг. и продлилось до 2002 г. В 1996 г. ушел на пенсию главный конструктор комплекса «Окно» В. С. Чернов, в том же году главным конструктором комплекса и начальником СКБ-4 научно-технического центра ОАО «Красногорский завод им. С. А. Зверева», был назначен Валерий Колинько, до того – начальник отдела электронной аппаратуры.

В 2002 г. по указу президента РФ комплекс «Окно» вошел в состав Космических войск и заступил сначала на опытно-боевое, а с 2004 г. и на боевое дежурство. Комплекс доказал свои исключительно высокие возможности. За его создание в 2005 г. главному конструктору комплекса кандидату технических наук В. И. Колинько, генералу А. Ю. Квасникову и главному конструктору телевизионной аппаратуры, кандидату технических наук А. Е. Верешкину была присуждена Государственная премия РФ.

Оптико-электронный комплекс контроля космического пространства «Окно» располагается на позиции на г. Санглок (2200 м над уровнем моря). Комплекс расположен в районе с уникальным астроклиматом: большое количество ясных ночей, прозрачная и стабильная атмосфера, отсутствие светового загрязнения.

Оптическая наблюдательная астрономия, являясь важной опорой современного естествознания, сегодня завершает исторический переход из эпохи «наблюдательно-фотографической» в эпоху «телевизионно-компьютерную».

Оглядываясь на прошедшее время и оценивая проделанную работу, с полным правом следует признать, что родоначальником «телевизионно-компьютерной» астрономии в России является Красногорский завод. Именно этим предприятием вместе с заводами-смежниками еще в 1970-е гг. были решены две принципиальные проблемы:

создана аппаратура для полностью автоматической обработки астрономической информации в реальном масштабе времени;

создан комплект алгоритмов и программ для управления многостанционным комплексом в сложных и быстроменяющихся условиях наблюдения без какого-либо участия операторов.

А учитывая уровень существовавшей на тот момент элементной базы (например, тактовая частота одной из «самых продвинутых» интегральных микросхем серии «Посол» была всего 5 Мгц), можно представить глубину тех трудностей, которые пришлось преодолеть в процессе разработки комплекса «Окно».

Комплекс «Окно» доказал свои исключительно высокие возможности
Фото: Алексей Матвеев

Обратим внимание и на то, что в оптической астрономии используется в известной мере уникальная аппаратура, наблюдения являются разовыми и тщательно спланированными, работу выполняет квалифицированный научный персонал, имеющий богатый опыт в части тонких физических экспериментов. В рамках же ОКР «Окно» было создано средство вооружения, стоящее на ответственном боевом дежурстве и эксплуатируемое штатным воинским подразделением. Причем само подразделение хотя и является элитным, но функционирует в режиме, обеспечивающем прежде всего безопасность страны со всеми вытекающими отсюда последствиями.

Сегодня комплекс «Окно» продолжает решать возложенные на него задачи. Однако время берет свое. Возникла потребность его модернизации. Известно, что модернизация вооружения и военной техники традиционно считается одним из наиболее эффективных способов продления жизненного цикла принятых на вооружение образцов. Как правило, при модернизации повышаются их ТТХ (иногда существенно), увеличивается ресурс, снимаются проблемы с пополнением ЗИПа и др.

Возможности по модернизации комплекса «Окно» были заложены при его создании (высокое качество консервативных оптико-механических частей, высокая степень унификации аппаратных средств, возможность применения приемников излучения с увеличенной светочувствительной поверхностью). Комплекс оказался «восприимчивым» к новой элементной базе, к новым аппаратным и программным средствам обработки информации и управления.

Наиболее принципиальный момент связан с заменой приемников излучения. Использование двух типов приемников на ПЗС-матрицах (крупноформатных для обзорно-поисковых каналов и «быстрых» для измерительных координатно-фотометрических каналов) позволяет повысить проницающую способность станций комплекса на 1,5 m-2 m, увеличить поле зрения (телесный угол) поисковых станций в 3,2–5,4 раза, уменьшить ошибку измерения угловых координат в 8–10 раз, довести частоту фотометрирования с 25 до 100 гц.

Модернизация аппаратуры обработки информации и управления позволяют резко снизить ее объем (примерно в 15 раз), уменьшить энергопотребление, упростить техническое обслуживание.

Доработка программно-алгоритмического обеспечения и введение в состав комплекса аппаратуры измерения астроклиматических параметров, в том числе и датчика ночной облачности, позволяют более полно использовать рабочее время, особенно в те ночи, которые принято называть полуясными. Это повышает пропускную способность комплекса и увеличивает продолжительность времени, отводимого для автономного поиска.

После завершения модернизационных мероприятий, которые в настоящее время успешно выполняются, комплекс «Окно» еще в течение длительного времени будет оставаться одним из ключевых компонентов российской системы контроля космического пространства.

Показать источник
Автор: Александр Борисович Бельский, заместитель генерального директора по науке федерального научно-производственного центра ОАО «Красногорский завод им. С. А. Зверева»; Станислав Евгеньевич Здор, ведущий инженер-конструктор – руководитель группы НТЦ ФНПЦ ОАО «Красногорский завод им. С. А. Зверева», кандидат технических наук, заслуженный конструктор РФ; Валерий Иванович Колинько, начальник СКБ-4, главный конструктор средств ККП, НТЦ ФНПЦ ОАО «Красногорский завод им. С. А. Зверева», кандидат технических наук, лауреат Государственной премии РФ; Николай Григорьевич Яцкевич, заместитель главного конструктора средств ККП, НТЦ ФНПЦ ОАО «Красногорский завод им. С. А. Зверева»
Просмотров: 1032

Комментарии к статье (0)

Вооружение по теме:

"Окно" - оптико-электронный комплекс


Теги: окно
В представленой статье изложена точка зрения автора, ее написавшего, и не имеет никакого прямого отношения к точке зрения ведущего раздела. Данная информация представлена как исторические материалы. Мы не несем ответственность за поступки посетителей сайта после прочтения статьи. Данная статья получена из открытых источников и опубликована в информационных целях. В случае неосознанного нарушения авторских прав информация будет убрана после получения соответсвующей просьбы от авторов или издателей в письменном виде.
e-mail друга: Ваше имя:


< 2017 Сегодня < Фев >
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728     
Сотрудничество
Реклама на сайте




Реклама